当前位置:首页 > 宇宙时间奥秘 > 正文

电磁时间_宇宙时间奥秘

2019-11-22 宇宙时间奥秘

电磁时间_宇宙时间奥秘
 
 
牛顿提出他的定律,是为了研究引力对大质量物体的作用。但是自然界中还有其它的力,例如静电力——我们梳头时使头发竖立起来的力。解释静电现象的定律最后演变为电磁理论,它是物理学的第二个主要的理论构成。在这里,时间同样是一个棘手的问题。
 
牛顿引力理论的一个饶有兴趣的特点,是它描述了两个大质量的物体(例如太阳和月亮)之间的一种瞬时作用,尽管这两个物体并没有直接接触。这种现象被称为超距作用。它使当时的科学家和哲学家都感到头疼,因为找不到显而易见的机制去说明它。在《原理》一书中,牛顿叙述道:“我希望我们能用类似力学原理的推理,导出其它自然现象,  
因为有许多理由使我猜想,这些现象都取决于某些力,这些力使得物体中的粒子由于某些迄今未知的原因,或者相互靠近而连接成规则形状,或者相互排斥而分散。这些力既属未知,所以哲学家们迄今对大自然的探索仍是徒劳无功。”
 
对于像一记拳或是一记耳光那样的碰撞力,物理学家和哲学家们可以理解。可是对于吸引力或排斥力——像牛顿的引力——总认为是玄虚的。牛顿在科学上的主要敌手莱布厄兹,曾把牛顿的工作评论为,“引力(不言而喻,任何牛顿其它的原动力),不是故弄玄虚就是某种奇迹的作用。”牛顿为了解决这一问题,想像了一个引力场,它从每一个引力质量中流出,瞬时弥漫到整个空间,并且随着到物体质量中心距离的增加,它的强度按平方反比而减少;这样当距离增加一倍时,引力场的强度就减少到四分之
 
静电力——例如,在带电的梳子和头发之间的静电力——以同样的方式作用于整个空间。为使这种作用在一段距离外发生,就要假定有一个电场,就像牛顿的引力场那样。1785 年法国人库仑(Charles Coulomb)获得了必要的实验精度,为静电力的理论提供了基础。根据他的实验,他得到了一个把荷电物体之间相互作用定量化的定律。库仑使用了一个扭矩天平,这是一个可以测量一对荷电球之间电力的装置。他发现同性电荷相互排斥而异性电荷相互吸引,在这两种情况下,相互作用力都准确地按照荷电球之间距离的平方反比而变化(并且正比于两个球电荷量的乘积)。
 
库仑定律与牛顿的引力定律具有惊人的相似性:两者都用了场的概念,都用了平方反比定律,来描述超距作用。诚然,也有一些重要的区别。电荷有两种类型,正电荷与负电荷。同性电荷相斥,异性电荷相吸。而引力只有一种类型的“荷”——质量——它总是相吸的:日月星辰之间全都是互相吸引。
 
与静电学有关的静磁场的研究,与静电场有非常相像的历史,两者之间有许多相似之处。当时担任伦敦皇家研究所所长的法拉第(Michael Faraday) 1820 年在电学和磁学方面进行了独创性的研究,发现运动的或动态的磁作用与静电作用紧密相关,而且反之亦然。运动的电荷产生磁场,而运动的磁场在导体中产生电流(第三章中我们将深入讨论这种对称性的原因)。法拉第的开创性工作,由苏格兰人麦克斯韦( James Clerk Maxwell,l831—79)用有力的理论继续发展。麦克斯韦 1864 年当伦敦大学皇家学院的教授时,证明了电和磁的作用,是同一个电磁力不同的表现形式。他最后集其大成的数学方程是如此优美,使得玻耳兹曼(Boltzmann)不禁引用哥德(Goethe)的语句:“难道是上帝写的这些吗?  ”麦克斯韦把法拉第的电磁定律数学化,其结果现在就叫做麦克斯韦方程。根据这些方程,麦克斯韦得到一项推论说,电磁信号在  
真空中应该以一个恒定的速度运动,而这个速度就是光的速度。
 
这样说来,我们就很难避免下结论,说光本身就是一种电磁作用。不久之后,另外一些形式的电磁辐射也被发现了,从此人们知道可见光只是电磁波谱中的一部分,整个电磁波谱覆盖着从射电波直到 X 射线以及它以外的波段。我们熟悉的从红色到紫色的电磁辐射波谱,仅仅只是整个波谱中的、人的视网膜感觉得到的一个波段。
 
然而,就像牛顿方程一样,麦克斯韦方程也不区分过去和将来。时间不论是正值还是负值,方程都是不变的,方程里面不包含过去和将来的区别。按照麦克斯韦方程,一个像电子这样带电的、有质量的粒子,在电场和磁场并存的情况下,由于同时受到这两个场的作用,将受到一个以荷兰物理学家洛伦兹(HendrikLorentz)的名字命名的力。这个粒子的运动于是就可以用牛顿运动方程来描述,洛伦兹力和粒子质量决定粒子的加速度。
 
这样我们又一次失去了时间箭头。正如先前讲到的引力下的运动一样,现在我们在电动力学中又遇到了可逆的力学描述。有关带电粒子在电场、磁场或者两者并存情况下的实验,证实了这些时间对称的运动方程的解,的确给出了正确的动力学结果。可是许多电磁现象,很明显地是具有时间方向的。从没有人见过光波从照亮的房间里聚回到电灯灯丝,然后被灯丝吸收;也从没有人见过光线从我们的眼睛跑出来,再被太阳或是其它光源吸收回去。因此有些人说,存在一种电磁的时间箭头,它可以排除这些“倒转”过程,原因是这些过程的初始条件,被实现的几率极小。这种说法和我们前面已经反驳过的,有关公牛和瓷器店的说法,十分相似。
 
电和电磁辐射在守时技术方面起了很大的作用。依赖于个别地方准确守时的“地方时”制度由此结束,取而代之的是全国性的“国家时”。这给出了一个全国范围共同意识的“现在”。无线电波可以使遍布全国的钟表时间同步。当第一个电报系统 1838 年在英国被采用时,人们就已认识到,用同样的办法,可以传播来自同一个主钟的信号。电使得钟表的准确性比以往大大提高。在美国的贝尔实验室,借助于电路装置的晶体石英钟,早在 20 年代后期就已经问世。在这类钟里,石英晶体像音叉一样,以恒定而且非常准确的频率振荡。这一频率是石英晶体的特性,不像机械钟那样,它和钟表的设计基本无关。
 
1948 年,设在华盛顿的美国国家标准局,成功地把一种分子振动用于守时,为原子钟铺开了道路。原子钟的“滴答”频率是完全与工艺设计无关的。美国国家标准局当时用的是氨分子,它的形状像金字塔,由三个氢原子和一个氮原子组成。三个氢原子构成一个环,氮原子前后跳动穿过这个环,就形成了钟的“滴答”走时。最古老的守时钟就是我们所在的这颗行星了;它的缺点,是它的转动速率不是完全稳定的,与此  
相比,原子钟是要好得多了。由于地球极冠的冰雪冻结和融化,潮汐的摩擦以及其它产生于地球内部深处的作用,一天的长度在一年之中,有千分之一秒左右的涨落。这对于现代超精密的守时需要来说,是完全不够的。