当前位置:首页 > 矿用风门 > 矿用调节风门 > 正文

自动百叶式调节风窗实施方式

2020-07-17 矿用调节风门

自动百叶式调节风窗具体实施方式

[0050] 应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
[0051] 需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
自动百叶式调节风窗
[0052] 本申请的一种典型的实施方式中,如图1所示,矿井自动风门风窗实时监测控制系统总体分为矿井自动风门、自动调节风窗、矿井通风实时监测控制器三部分组成。
[0053] 本系统根据煤矿的实际情况,采用集散控制思想,即集中管理、分散控制,实现对煤矿通风系统进行有效的监控管理。分散控制,主要体现在:
[0054] 1)每道门都有一个风门控制器对其的直接控制,一组门有一个风门集中控制器,风门集中控制器实现对本组内各个门之间的联动控制。风门集中控制器通过485总线实现与数据中转控制器的通讯。
[0055] 2)每道风窗有一个风窗控制器实现对其直接控制;风窗控制器通过485总线实现与数据中转控制器的通讯。
[0056] 3)数据采集器实现对风道内风速、风压、温度、CH4、CO等信号的采集。数据采集器通过485总线实现与数据中转控制器的通讯。
[0057] 4)数据中转控制器实现对风窗信息、风门信息、传感器信息的汇集,通过网络上传给服务器,并接收服务器下发的指令,转发给相应的控制器,实现相应的控制。
[0058] 数据中转控制器同风门集中控制器、风窗控制器、数据采集器之间通过485进行通讯;服务器和数据中转控制器之前通过网络进行通讯。可以根据现场的需要,在数据中转控制器上添加风门集中控制器、风窗控制器、数据采集器;一个服务器也可以管理多个数据中转控制器。
[0059] 具体的硬件如图2所示,上位机安装在地面监控机房,实时监测和控制井下自动风门、风窗的运行状态:自动风门、风窗等风量调控设施作为执行机构安装在井下主要风量调节地点,用于实现风量精确调控:电控系统通过井下环网和气路与上位机软件和自动风门、风窗,即向上位机软件上传传感器和风门风窗的运行状态和监测数据,同时又向自动风门风窗传输上位机软件的决策命令,迸行风量的远程精确调控。
[0060] 自动百叶式调节风窗安装于回风巷道内,能够通过上位机软件远程发布命令以压缩空气为动力,通过窗叶的角度变化完成过风断面的快速精确调节,同时风窗的状态信息能够实时监测。另外还可以利用摇把手动调节过风面积。装置由气动控制百叶风窗、执行机构、控制系统及传感器组成。
[0061] 自动百叶式调节风窗:能够防止非通风技术人员误操作,造成风窗面积变化;活动窗扇四周,及行人小门均设置密封条,实现风量的可靠控制。设置U型水柱计和刻度盘实现 5/7页过风面积和压差的直观量示;风窗可配合电控系统及上位机软件实现风量的远程精确控制;风量远程自动调节时间小于10s;摄像机实时监控风门状态。
[0062] 自动控制风门装置主要安装在进回风巷之间的联络巷或回风顺槽端头,由前后两道门体组成。正常通风情况下,两道风门间具有气路闭锁,密封良好,实现进回风之间的有效隔离。一旦矿井发生火灾,可以通过上位机软件,远程将两道风门全部打开,将烟流引入回风巷。装置由气动控制风门、执行机构、控制系统及传感器组成。
[0063] 在电路设计上采用高智能型电脑芯片,电路结构简单、工作可靠,从而实现多种用途的自动控制。具有远程监控及上位机控制;485通讯串口可以通过井下以太网与上位机通讯;液晶显示双色背光(区分风门开闭状态),时钟、各种参数、故障报警;内置无线接收模块可远距离遥控开门配有遥控器;并预留温度、烟雾、粉尘浓度及风速测量接口;风门自动启闭时间可调并且风门的关闭时间分两次完成。
[0064] 自动控制风门装置功能及特点,显示功能;本装置能准确显示风门的“开”“关”两种状态颜色。闭锁功能:A门和B门不能同时打开。手动功能:当按下A门按钮时候A门打开,当按下B门按钮时B门打开。自动功能:当A门传感器检测到人员通过时A门自动打开,当B门传感器检测到人员通过时B门自动打开,A门和B门不能同时打开。遥控器参数设置;设置关门时间(10-300S)可调。摄像机实时监控风门状态。
[0065] 自动单页式调节风窗主要配合自动控制风门一起使用,用于控制风门的过风量,防止前后两道凤门之间风量过小,造成瓦斯积聚。单页式自动风窗安装在自动风门上方的两个矩形通道内,能够防止非通风技术人员误操作,造成风窗面积变化;活动窗扇四周设置密封条,实现风量的可靠控制;设置U型水柱计和刻度盘实现过风面积和压差的直观量示;风窗可配合电控系统及上位机软件实现风量的远程精确控制;风量远程自动调节时间小于
10s;摄像机实时监控风门状态。
[0066] 使用计算机作为控主机,ZMK127-Z矿用隔爆兼本安型风门控制用电控装置主控箱主要用于煤矿井下的风门自动化控制、风窗自动化控制、风量智能化调节系统,采用专用
CPU作为核心设备,具有较强的适用性、可扩展性、高可靠性和强大的通讯能力。
[0067] 主机内部的输入和输出信号之间有可靠的隔离措施,从而确保与各种类型传感器、执行器、各种设备电控回路的连接和匹配之间更加灵活、通用。
[0068] 主要技术参数:供电电压:AC127V;本安参数:Uo:18.7VDC;Io:760m A;Co:0.1μF;
Lo:0.1mH。
[0069] 主要功能:自动风窗过风面积及风量监测控制。风门的自动控制及监控。瓦斯、风压、温度、风速风量等实时监测。采用摄像机远程监控。风窗可根据设置的过风面积自动调节通风量。
[0070] 矿并通风井上监控系统不仅仅是上位机软件,同时具有矿井通风网络实时监测、数据永久存储管理,通风设施远程精确控制等功能,具有安全性与可靠性分析等核心功能,以及误差分析、数据分析、数据管理等辅助功能,为矿并通风系统科学管理提供有效的技术手段。
[0071] 矿用自动风门风窗监控系统作为矿井通风智能决策与远程控制系统的子系统,可以单独使用。
[0072] 技术参数:可安风量精测装置;矿井通风智能决策方案响应时间小于120s;风量精
6/7页
测装置测风误差不大于5%;主要回巷风量模拟准确率大于95%。
[0073] 本申请根据井下布置的温度传感器、甲烷传感器、风速传感器、CO传感器、压力传感器实时监测的数据,通过网络传输到上位机,上位机根据通风专业计算公式等得出采煤工作面需风量,同时向下位机控制柜发送控制指令,控制柜调节百叶风窗开启大小,已达到风量需求,从而实现合理配风的要求。
[0074] 在具体实施时,本申请中百叶风窗结构如图3(a)-图3(c)所示,百叶风窗包括设置在左侧的一组左侧风叶1-2及设置在右侧的一组右侧风叶1-5,左侧风叶及右侧风叶由驱动总成1-7驱动,左侧风叶及右侧风叶设置在风窗外框内,风窗外框与风叶之间还设置有风窗内框1-3,左侧风叶及右侧风叶通过固定板1-4固定在风窗外框1-1上,左侧风叶及右侧风叶通过连杆机构1-6、相连。
[0075] 其中,风窗内框的具体结构如图4(a)-图4(b)所示,包括平行设置的内框下板3-1 及内框上板,内框下板及内框上板的两端通过内框侧板3-2相连,构成方形框体,内框侧板通过自攻螺钉3-3与风窗外框进行固定,内框上板通过第一连接螺栓3-4与风窗外框进行固定,内框下板通过第二连接螺栓3-5与风窗外框进行固定。
[0076] 风叶的具体结构如图5(a)-图5(b)所示,包括页片,页片的一端设置有轴套,用于与风窗内框相连,页片的另一端设置有轴,轴上设置有摇柄。通过摇柄的转动实现对页片旋转角度的设置。
[0077] 本申请中自动风门如图6(a)-图6(b)所示,包括底部基板1,底部基板上设置有风门外框6,风门外框的中部两侧对称设置有侧支脚5,风门外框包括风门上板、风门下板、两个风门侧板,其中,风门下板与两个风门侧板之间的通过连接板A2相连,风门上板与两个风门侧板之间的通过连接板B7相连,风门外框内设置有两个门体,风门外框与门体之间设置有风门内框3,其中一个风门侧板与一个门体之间设置有活页4,门体上还设置有门把手9及观察口8,风门外框的风门上板设置有气缸支座,气缸支座13与气缸12的一端相连,气缸的另一端分别连接至驱动杆及从动杆10,驱动杆11驱动从动杆带动门体旋转开启或关闭。风门外框采用矩钢,内框和门骨架采用方钢,所有的连接部位采用M16螺栓连接。

相关文章